Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Unsolved mysteries of Rag GTPase signaling in yeast.

Identifieur interne : 000966 ( Main/Exploration ); précédent : 000965; suivant : 000967

Unsolved mysteries of Rag GTPase signaling in yeast.

Auteurs : Riko Hatakeyama [Suisse] ; Claudio De Virgilio [Suisse]

Source :

RBID : pubmed:27400376

Descripteurs français

English descriptors

Abstract

The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.

DOI: 10.1080/21541248.2016.1211070
PubMed: 27400376
PubMed Central: PMC5129903


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Unsolved mysteries of Rag GTPase signaling in yeast.</title>
<author>
<name sortKey="Hatakeyama, Riko" sort="Hatakeyama, Riko" uniqKey="Hatakeyama R" first="Riko" last="Hatakeyama">Riko Hatakeyama</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biology , University of Fribourg , Fribourg , Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>a Department of Biology , University of Fribourg , Fribourg </wicri:regionArea>
<wicri:noRegion>Fribourg </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biology , University of Fribourg , Fribourg , Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>a Department of Biology , University of Fribourg , Fribourg </wicri:regionArea>
<wicri:noRegion>Fribourg </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27400376</idno>
<idno type="pmid">27400376</idno>
<idno type="doi">10.1080/21541248.2016.1211070</idno>
<idno type="pmc">PMC5129903</idno>
<idno type="wicri:Area/Main/Corpus">000A18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A18</idno>
<idno type="wicri:Area/Main/Curation">000A18</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A18</idno>
<idno type="wicri:Area/Main/Exploration">000A18</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Unsolved mysteries of Rag GTPase signaling in yeast.</title>
<author>
<name sortKey="Hatakeyama, Riko" sort="Hatakeyama, Riko" uniqKey="Hatakeyama R" first="Riko" last="Hatakeyama">Riko Hatakeyama</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biology , University of Fribourg , Fribourg , Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>a Department of Biology , University of Fribourg , Fribourg </wicri:regionArea>
<wicri:noRegion>Fribourg </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Department of Biology , University of Fribourg , Fribourg , Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>a Department of Biology , University of Fribourg , Fribourg </wicri:regionArea>
<wicri:noRegion>Fribourg </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Small GTPases</title>
<idno type="eISSN">2154-1256</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>GTP Phosphohydrolases (metabolism)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Transduction du signal (MeSH)</term>
<term>dGTPases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>GTP Phosphohydrolases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Facteurs de transcription</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>dGTPases</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">27400376</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2154-1256</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>7</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2016</Year>
<Month>10</Month>
</PubDate>
</JournalIssue>
<Title>Small GTPases</Title>
<ISOAbbreviation>Small GTPases</ISOAbbreviation>
</Journal>
<ArticleTitle>Unsolved mysteries of Rag GTPase signaling in yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>239-246</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The target of rapamycin complex 1 (TORC1) plays a central role in controlling eukaryotic cell growth by fine-tuning anabolic and catabolic processes to the nutritional status of organisms and individual cells. Amino acids represent essential and primordial signals that modulate TORC1 activity through the conserved Rag family GTPases. These assemble, as part of larger lysosomal/vacuolar membrane-associated complexes, into heterodimeric sub-complexes, which typically comprise two paralogous Rag GTPases of opposite GTP-/GDP-loading status. The TORC1-stimulating/inhibiting states of these heterodimers are controlled by various guanine nucleotide exchange factor (GEF) and GTPase-activating protein (GAP) complexes, which are remarkably conserved in various eukaryotic model systems. Among the latter, the budding yeast Saccharomyces cerevisiae has been instrumental for the elucidation of basic aspects of Rag GTPase regulation and function. Here, we discuss the current state of the respective research, focusing on the major unsolved issues regarding the architecture, regulation, and function of the Rag GTPase containing complexes in yeast. Decoding these mysteries will undoubtedly further shape our understanding of the conserved and divergent principles of nutrient signaling in eukaryotes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hatakeyama</LastName>
<ForeName>Riko</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>a Department of Biology , University of Fribourg , Fribourg , Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>De Virgilio</LastName>
<ForeName>Claudio</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>a Department of Biology , University of Fribourg , Fribourg , Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>07</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Small GTPases</MedlineTA>
<NlmUniqueID>101530974</NlmUniqueID>
<ISSNLinking>2154-1248</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C561842">TORC1 protein complex, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="D020558">GTP Phosphohydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020558" MajorTopicYN="N">GTP Phosphohydrolases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">EGO complex (EGOC)</Keyword>
<Keyword MajorTopicYN="Y">Lst4-Lst7</Keyword>
<Keyword MajorTopicYN="Y">Rag GTPases</Keyword>
<Keyword MajorTopicYN="Y">SEACAT</Keyword>
<Keyword MajorTopicYN="Y">SEACIT</Keyword>
<Keyword MajorTopicYN="Y">Target of Rapamycin Complex 1 (TORC1)</Keyword>
<Keyword MajorTopicYN="Y">amino acid signaling</Keyword>
<Keyword MajorTopicYN="Y">yeast</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>7</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27400376</ArticleId>
<ArticleId IdType="doi">10.1080/21541248.2016.1211070</ArticleId>
<ArticleId IdType="pmc">PMC5129903</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell. 2014 Feb 13;156(4):786-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24529380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 4;58(5):804-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25936802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Nov 20;9(4):1281-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25457612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2016 Jan 1;351(6268):53-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26586190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2013 Jul 18;154(2):403-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23870128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Aug;10(8):935-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Sep 5;289(36):25010-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25063813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Oct 21;336(2):639-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Oct 06;4:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2013 Sep 15;12(18):2948-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23974112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2015 Mar 26;519(7544):477-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25561175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2016 Jun 07;9(431):re5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27273098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 May 31;340(6136):1100-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23723238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Sep 14;150(6):1196-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22980980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7246-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2009 Sep 11;35(5):563-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19748353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2015 Oct 6;13(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26387955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2006 Jul;8(7):657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16732272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Apr 13;46(1):105-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(5):e36616</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22574197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Aug 7;55(3):409-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2014 Sep;26(9):1950-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2014 Sep 18;41(3):375-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25238095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Jun 2;125(5):1003-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16751107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2015 Sep;25(9):1043-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26206314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Jul 1;128(13):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25999476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):853-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2014 Oct;198(2):773-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25085507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Jan 15;27(2):382-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26609069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2014 Oct 9;9(1):1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25263562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013 May 28;6(277):ra42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23716719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2011 Aug 15;25(16):1668-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Sep 30;202(7):1107-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24081491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4510-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22966204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2016 Mar 24;165(1):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26972053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2014 Mar;38(2):254-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24483210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2005 Jul 1;19(1):15-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15989961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Dec 5;20(12):2151-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23123112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 24;287(35):29648-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22807443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Nov 4;334(6056):678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):410-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22424946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Feb 02;7:10336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26831757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Oct 2;273(40):25864-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9748261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2015 Jul;35(14):2479-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25963655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Jun 18;58(6):989-1000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26051179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2014 Sep 25;159(1):122-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25259925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Nov;22(21):4124-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21900499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Nov 21;52(4):495-505</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24095279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 Sep;14(9):2454-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26077900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2015 Mar 30;5:9502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25819761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2014 Sep;10(9):1565-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25046117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jun 26;284(26):17720-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19416974</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jun 13;320(5882):1496-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 May 15;437(1-2):32-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19374031</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suisse</li>
</country>
</list>
<tree>
<country name="Suisse">
<noRegion>
<name sortKey="Hatakeyama, Riko" sort="Hatakeyama, Riko" uniqKey="Hatakeyama R" first="Riko" last="Hatakeyama">Riko Hatakeyama</name>
</noRegion>
<name sortKey="De Virgilio, Claudio" sort="De Virgilio, Claudio" uniqKey="De Virgilio C" first="Claudio" last="De Virgilio">Claudio De Virgilio</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000966 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000966 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27400376
   |texte=   Unsolved mysteries of Rag GTPase signaling in yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27400376" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020